Back to Table of Contents (Vol 08, Issue 02)


Deepthi K, Jagadish Reddy, Raja Babu. P, Vikram Reddy

Inflammasome- A Novel Mechanism of Innate Immunity In Periodontal Disease

Deepthi K1, Jagadish Reddy2, Raja Babu. P3, Vikram Reddy4

1Post Graduate Student, Department of Periodontics, Kamineni institute of dental sciences. Narketpally, Nalgonda, Telangana.
2&4Reader, Department of Periodontics, Kamineni institute of dental sciences. Narketpally, Nalgonda, Telangana.
3Professor & HOD, Department of Periodontics, Kamineni institute of dental sciences. Narketpally, Nalgonda, Telangana.

Email for correspondence: drdeepthikannam@gmail.com
Received: April 10, 2016
Review Completed: May 11, 2016
Accepted: June 9, 2016
Available Online: September, 2016
doi: 10.5866/2016.8.10094

ABSTRACT

Periodontitis is a chronic inflammatory disease. Besides microbiota, various other risk factors also play a role in the progression of periodontal disease. Host immune system prevents the progression of periodontal disease by clearing the microbiota. Immune system consists of innate and adaptive mechanism which control of periodontal disease. Innate immune system is non-specific and various mechanisms and cells play key role in the arrest of periodontal disease. Recently the role of inflammasome complex is explored in arresting periodontal disease. This review highlights the inflammasome, the regulation and the role of inflammasome in the periodontal disease.

Key words: Inflammasome, innate immunity, periodontitis


INTRODUCTION

The innate immune system is critical for the defense against pathogenic microorganisms. The host faces major challenges from microbial pathogens escaped from the host immune system. The innate immune system which act as first line of defense, relies on the presence of pattern recognition receptors, including membrane-bound Toll-like receptors, retinoid- inducible gene 1-like receptors, C-type lectin receptors and nucleotide-binding- domain-like receptors, to recognize various pathogens and their components.1, 2 These special receptors are expressed by macrophages, neutrophils, monocytes and epithelial cells. They respond to ’pathogen-associated molecular patterns (PAMP)’ and ’danger-associated molecular patterns (DAMP). DAMPs are of host derived (ATP, DNA or cholesterol crystals) or environmentally (asbestos, silica) derived.3 The activation of pattern recognition receptors by PAMPs and DAMPs leads to activation of specific inflammatory response by ’inflammasome’ complex.

Inflammasome: The term ’inflammasome’ was coined by Jurg Tschopp and his research team in 2002. Inflammasome complex is nucleotide-binding- domain-like receptors containing multi protein complexes. They are activated by exposure to cellular danger or stress signals, which trigger release of pro-inflammatory cytokines, such as interleukin-1ß (IL-1) and interleukin-18(IL-18).4 Nucleotide-binding-domain-like receptors (NLRs) are a family of intracellular immune receptors which consists of leucine-rich repeats (LRRs) near the C terminus and a nucleotide-binding domain (NBD). The LRR domain plays role in auto regulation, the recognition of PAMPs and protein-protein interactions. The NBDs regulates self- oligomerization.5, 6

NLRs differ in their N-terminal domains.7 The largest group contains 14 members which have N- terminal pyrin domain (PYD). Another group contains an N-terminal caspase recruitment domain (CARD), and other group contains nucleotide- binding oligomerization domains (NOD) Other NLR family members contains an acidic transactivation domains. Several members of the NLR family assemble as multi molecular complexes in response to various activators, leading to the activation of inflammatory caspases. Activated caspase-1 controls the maturation of the cytokines of the IL-1 family. These NLRs complexes are called inflammasome. The inflammasome are NLRP1, NLRP3, NLRC4 and AIM2 (Figure 1) which belongs to a different protein family (PYHIN).8-11

Figure 1: Nucleotide-binding-domain-like receptors (NLRs)

Click here to view

Inflammasome can control the mediation of proinflammatory responses in a group of chronic diseases, such as gout, cancer and bacterial and viral infections.2, 12 The dysregulation of inflammasome components are associated with various inherited chronic inflammatory and immune disorders.3 In particular, the imbalance of interleukin-1ß activity is among the focal points of both microbial- associated and non microbial inflammatory diseases. The progression of periodontitis is inflammatory in nature, with the main triggers of oral inflammation usually residing in the oral micro biome and the balance of its components.13

Activation of NLRP3 inflammasome

NLRP3 is one of the best characterized nucleotide- binding-domain-like receptor family which plays a key role in the induction of pro-inflammatory host responses.14 Microbial infection individual microbial components and host-derived small danger molecules, such as extracellular ATP activates NLRP3. 15-17 The stimulated NLRP3 binds to caspase-1, leads to the activation of caspase-1, which ultimately cleaves pro- interleukin-1ß and pro-interleukin-18 into their biologically active mature forms.4

NLRP3 inflammasome activation generally requires two signals (Figure 2):

Figure 2: Inflammasome Signaling Pathway

Click here to view

I. The first signal is induced when PAMPs stimulate a pattern- recognition receptor and leads to production of the interleukin-1 precursor.18

II. The second signal is induced by DAMPs

A growing number of research findings are highlighting the crucial role of extracellular ATP in the regulation of the NLRP3 inflammasome through purinergic receptors (P2X).19 The significance of the P2X7 receptor is widely studied in myeloid cells, such as monocytes, macrophages and dentritic cells. The role of P2X7 in epithelial cells is recently explored. Gingival epithelial cells which are first line of innate immunity, express functional P2X7 receptors.20, 21 Recent studies have shown the role of P2X7 in the production of intracellular reactive oxygen species (ROS), which in turn leads to the activation of the NLRP3 inflammasome.22, 23

Potential mechanisms of NLRP3 inflammasome activation

Currently, there are three models for activation of the NLRP3 inflammasome:

  • 1) The reactive oxygen species (ROS) model

  • 2) The lysosomal burst model

  • 3) The ATP-triggered K+-efflux model

Inflammasome signaling and periodontal disease

Inflammasome complexes play a pivotal role in periodontal disease and the inflammasome- associated inflammatory mediators involved in the progression of the disease have been highlighted through several clinical studies. 24-26 The relationship between the IL-1 cytokine family and the NLRP3 inflammasome complex has been studied recently.24 The findings of this study showed higher levels of NLRP3, NLRP2, IL-1 β and IL-18 mRNA in gingival tissue samples from patients with periodontal disease and also showed a positive correlation between NLRP3 and expression of IL-1 β and IL-18 in periodontal disease.24 Certain species of periodontal bacteria, such as P. gingivalis(pg), Treponema denticola(td), Tannerella forsythia (tf) and Eubacterium nodatum, were showed correlation with IL-1 β and IL-18 in GCF who suffered with chronic periodontitis.26

Key players in periodontal disease and inflammasome signaling

Porphyromonas gingivalis (P. g)

Porphyromonas gingivalis is a gram-negative host-adapted anaerobe and a prominent bacterium present in the tissues of patients with chronic severe periodontitis.21, 27, 28 Pg plays a key role in both oral and systemic diseases.13, 29 It showed distinct mechanisms for manipulating host inflammatory responses, such as reducing the innate immune response for its own benefit and, simultaneously, providing a favorable environment for co-habitants, such as F. nucleatum and T. denticola.30 It showed significant down-regulation of the expression of NLRP3 inflammasome and IL-1ß was seen in periodontal tissues when P. gingivalis was introduced in a subgingival biofilm.31 But in macrophages, NLRP3 inflammasome was up regulated in the presence of P. gingivalis and leads to increased levels of IL-1 β which results highly inflammatory cell death known as ’pyroptosis’. P. gingivalis can inhibit the extracellular ATP- P2X7 pathway by directly preventing inflammasome activation through secreting an effector called ’nucleoside diphosphate kinase’.20 Silencing of pannexin-1 expression in gingival epithelial cells resulted in the inhibition of extracellular ATP release during P. gingivalis infection, highlighting the importance of pannexin-1 in activation of the inflammasome and secretion of interleukin-1 β.20

Aggregatibacter actinomycetemcomitans (Aa)

Aggregatibacter actinomycetemcomitans has been closely associated with the loss of periodontal tissue attachment in affected sites of both adults and juveniles. The presence of A. actinomycetemcomitans is a well-identified indicator of the initiation of localized aggressive periodontitis.32 The pathogenicity of the microorganism is also underlined by its well- characterized virulence factors, such as leukotoxin and cytolethal distending toxin, which are suggested to play important roles in altering host inflammatory responses as well as in contributing to periodontal disease progression.33

A. actinomycetemcomitans up regulates NLRP3, IL 1β and down regulates NLRP6 in peripheral mononuclear leukocytes. The bacterial leukotoxin induced an excessive proinflammatory response in macrophages, through the secretion of IL-1 β and IL-18 and the involvement of purinergic receptor P2X7 in the process.34 In contrast, in another in vitro study leukotoxin and cytolethal distending toxin gene knockout mutant strains of A. actinomycetemcomitans were used to infect human mononuclear leukocytes, only up-regulation of NLRP3, interleukin- 1β, interleukin-18 and reduction of NLRP6 were observed.31 Based on the results of this study, there was possible regulation of inflammasome complexes by additional molecules other than the two best-studied virulence factors of the microorganism. A potential candidate may be ’bacterial IL-1 β receptor I’, a putative membrane protein of A. actinomycetemcomitans, which was found to bind IL-1 β.35

Although ’bacterial IL-1 β receptor I’ role is not identified clearly. There is a need for future studies addressing the role of host immune signaling cascades which are involved in the virulence of this pathogen.

Candida albicans

Candida albicans is an opportunistic fungal pathogen that commonly resides on human mucosal surfaces and, when overgrown under immuno compromised conditions, causes inflammation and other systemic infections.36 One of the most characterized virulence-associated factors belongs to the family of the ’secretion of aspartic proteases’, which has been shown to induce secretion of pro- inflammatory cytokines in human monocytes.37

A recent in vitro discovery demonstrated that secretion of asparticproteases-2 and -6 specifically were responsible for inducing interleukin-1beta and interleukin-18 production in human monocytes as a result of activation of NLRP3 inflammasome and caspase-1.

Another study showed that both NLRC4 and NLRP3 inflammasomes were important in the induction of secretion IL-1 β. These studies demonstrate the ability of C. albicans to induce excessive inflammatory responses.38

CONCLUSION

Periodontal disease is a chronic inflammatory disease. Innate immune system in periodontal disease plays a vital role in arresting of the disease. Besides other components of innate immune system, the inflammasome play a key role in the arrest of periodontal disease by activation of pro inflammatory cytokines and regulation of immune system.

REFERENCES

1. Abdul-Sater AA, Said-Sadier N, Ojcius DM, Yilmaz O, Kelly KA. Inflammasomes bridge signaling between pathogen identification and the immune response. Drugs Today 2009; 45: 105-112.

2. Martinon F, Mayor A, Tschopp J. The inflammasomes: guardians of the body. Annu Rev Immunol 2009; 27: 229-265.

3. Schroder K, Tschopp J. The inflammasomes. Cell 2010; 140: 821-832.

4. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of pro IL-1 beta. Mol Cell 2002; 10: 417-426.

5. Duncan, Bergtralh, Wang, Willingham. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 8041-8046.

6. Ye Z, Lich JD, Moore CB, Duncan JA. ATP binding by monarch-1/ NLRP12 is critical for its inhibitory function. Mol. Cell. Biol.2008; 28: 1841-1850.

7. Ting, Jerry P, Lineberger. The NLR gene family: a standard nomenclature. Immunity 2008; 28: 285-287.

8. Buerckstuemmer T, Baumann, Dixit, Jahn. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 2009; 10: 266-2672.

9. Fernandes-Alnemri, Yu, Datta and Alnemri. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 2009; 458: 509-513.

10. Hornung, Ablasser, Charrel, Bauernfeind. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 2009; 458: 514-518.

11. Roberts, Idris A, Dunn JA, Kelly GM. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 2009; 323: 1057-1060.

12. Drexler SK, Yazdi AS. Complex roles of inflammasomes in carcinogenesis. Cancer J 2013; 19: 468-472.

13. Hajishengallis G, Lamont RJ. Breaking bad: manipulation of the host response by Porphyromonas gingivalis. Eur J Immunol 2014; 2: 328-338.

14. Latz E. The inflammasomes: mechanisms of activation and function. Curr Opin Immunol 2010; 22: 28-33.

15. Jin C, Flavell RA. Molecular mechanism of NLRP3 inflammasome activation. J Clin Immunol 2010; 30: 628-631.

16. Kim JJ, Jo EK. NLRP3 inflammasome and host protection against bacterial infection. J Korean Med Sci 2013; 28: 1415-1423.

17. Lamkanfi M, Dixit VM. Modulation of inflammasome pathways by bacterial and viral pathogens. J Immunol 2011; 187: 597-602.

18. Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002; 20: 197-216.

19. Gombault A, Baron L, Couillin I. ATP release and purinergic signaling in NLRP3 inflammasome activation. Front Immunol 2012; 3: 414.

20. Choi CH, Spooner R, DeGuzman J, Koutouzis T, Ojcius DM, Yilmaz O. Porphyromonas gingivalis-nucleoside- diphosphate- kinase inhibits ATP-induced reactive-oxygen- species via P2X7 receptor/NADPH-oxidase signalling and contributes to persistence. Cell Microbiol 2013; 15: 961-976.

21. Yilmaz O, Yao L, Maeda K, Rose TM, Lewis EL, Duman M, Lamont RJ, Ojcius DM. ATP scavenging by the intracellular pathogen Porphyromonas gingivalis inhibits P2X7- mediated host-cell apoptosis. Cell Microbiol 2008; 10: 863-875.

22. Di Virgilio F. Liaisons dangereuses: P2X(7) and the inflammasome. Trends Pharmacol Sci 2007; 28: 465-472.

23. Hung SC, Choi CH, Said-Sadier N, Johnson L, Atanasova KR, Sellami H, Yilmaz O, Ojcius DM. P2X4 assembles with P2X7 and pannexin-1 in gingival epithelial cells and modulates ATP-induced reactive oxygen species production and inflammasome activation. PLoS ONE 2013; 8: e70210.

24. Bostanci N, Emingil G, Saygan B, Turkoglu O, Atilla G, Curtis MA, Belibasakis GN. Expression and regulation of the NALP3 inflammasome complex in periodontal diseases. Clin Exp Immunol 2009; 157: 415-422.

25. Orozco A, Gemmell E, Bickel M, Seymour GJ. Interleukin- 1beta, interleukin-12 and interleukin-18 levels in gingival fluid and serum of patients with gingivitis and periodontitis. Oral Microbiol Immunol 2006; 21: 256-260.

26. Teles R, Sakellari D, Teles F, Konstantinidis A, Kent R, Socransky S, Haffajee A. Relationships among gingival crevicular fluid biomarkers, clinical parameters of periodontal disease, and the subgingival microbiota. J Periodontol 2010; 81: 89-98.

27. Avila M, Ojcius DM, Yilmaz O. The oral microbiota: living with a permanent guest. DNA Cell Biol 2009; 28: 405-411.

28. Sheets SM, Potempa J, Travis J, Casiano CA, Fletcher HM. Gingipains from Porphyromonas gingivalis W83 induce cell adhesion molecule cleavage and apoptosis in endothelial cells. Infect Immun 2005; 73: 1543-1552.

29. Atanasova KR, Yilmaz O. Looking into the Porphyromonas gingivalis’ cabinet of curiosities: the microbium, the host and cancer association. Mol Oral Microbiol 2014; 29: 55-66.

30. Jenkinson HF, Lamont RJ. Oral microbial communities in sickness and in health. Trends Microbiol 2005; 13: 589-595.

31. Belibasakis GN, Guggenheim B, Bostanci N. Down- regulation of NLRP3 inflammasome in gingival fibroblasts by subgingival biofilms: involvement of Porphyromonas gingivalis. Innate Immun 2013; 19: 3-9.

32. Fine DH, Markowitz K, Furgang D, Fairlie K, Ferrandiz J, Nasri C, McKiernan M, Gunsolley J. Aggregatibacter actinomycetemcomitans and its relationship to initiation of localized aggressive periodontitis: longitudinal cohort study of initially healthy adolescents. J Clin Microbiol 2007; 45: 3859-3869.

33. Feng ZM, Weinberg A. Role of bacteria in health and disease of periodontal tissues. Periodontol 2000 2006; 40: 50-76.

34. Kelk P, Abd H, Claesson R, Sandstrom G, Sjostedt A, Johansson A. Cellular and molecular response of human macrophages exposed to Aggregatibacter actinomycetemcomitans leukotoxin. Cell Death Dis 2011; 2: 126.

35. Paino A, Ahlstrand T, Nuutila J, Navickaite I, Lahti M, Tuominen H, Valimaa H, Lamminmaki U, Pollanen MT, Ihalin R. Identification of a novel bacterial outer membrane interleukin- 1beta-binding protein from Aggregatibacter actinomycetemcomitans. PLoS ONE 2013; 8: e70509.

36. Tomalka J, Ganesan S, Azodi E, Patel K, Majmudar P, Hall BA, Fitzgerald KA, Hise AG. A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans. PLoS Pathog 2011; 7 : e1002379.

37. Naglik J, Albrecht A, Bader O, Hube B. Candida albicans proteinases and host/pathogen interactions. Cell Microbiol 2004; 6: 915-926.

38. Pietrella D, Pandey N, Gabrielli E, Pericolini E, Perito S, Kasper L, Bistoni F, Cassone A, Hube B, Vecchiarelli A. Secreted aspartic proteases of Candida albicans activate the NLRP3 inflammasome. Eur J Immunol 2013; 43: 679-692.